40

Ảnh hưởng của Cr đến hệ số truyền chất khi thấm cacbon thể khí sử dụng khí công nghiệp

Nghiên cứu hệ số truyền cacbon sẽ giúp cho quá trình điều khiển nồng độ cacbon trên bề mặt thép hợp kim thấp thường được sử dụng trong sản xuất như 20CrMo… Continue reading Ảnh hưởng của Cr đến hệ số truyền chất khi thấm cacbon thể khí sử dụng khí công nghiệp

35

Giải mã sai hỏng để nâng cao chất lượng cho khuôn dập nguội làm bằng thép SKD11

Bài báo này đề cập đến việc khảo sát các nguyên nhân do vật liệu và nhiệt luyện không đúng dẫn đến tuổi thọ của khuôn thấp, các biện pháp khắc phục để nâng cao chất lượng của khuôn dập nguội bằng thép họ SKD11 Continue reading Giải mã sai hỏng để nâng cao chất lượng cho khuôn dập nguội làm bằng thép SKD11

34

Nghiên cứu khả năng quay vòng khí thải khi thấm cacbon thể khí sử dụng khí gas Việt Nam lên một loại thép công nghiệp

Mục tiêu của đề tài là giảm thiểu tối đa lượng khí thải ra trong quá trình thấm cácbon và tái sử dụng khí thải cho quá trình thấm tiếp theo. Đây là giải pháp hữu ích, không những giảm 30-60% tiêu thụ chất thấm, mà còn tránh phát thải CO2 và H2 ra môi trường. Continue reading Nghiên cứu khả năng quay vòng khí thải khi thấm cacbon thể khí sử dụng khí gas Việt Nam lên một loại thép công nghiệp

22

Ảnh hưởng của lượng và kích thước hạt SiC tới sự hình thành tổ chức và tính chất của compozit nền hợp kim nhôm A356

Bài báo này giới thiệu kết quả nghiên cứu thăm dò công nghệ chế tạo compozit …

The effect of content and size of SiC particles on microstructure and proper- ties of 356 alloy matrix composites

Nguyễn Văn Thái, Nguyễn Anh Sơn
Trường Đại học Bách Khoa Hà Nội
Nguyễn Văn Chương
Viện Công nghệ, Bộ Công Thương

TÓM TẮT

   Bằng phương pháp khuấy bán lỏng, đã chế tạo thành công compozit nền hợp kim nhôm A356 cốt hạt SiC. Đã nghiên cứu ảnh hưởng của lượng SiC từ 3 tới 12% và kích thước hạt từ 35 tới 120μm tới sự hình thành tổ chức và tính chất của compozit nghiên cứu. Compozit chứa 12% SiC với kích thước hạt 35μm sẽ cho tính năng vượt trội.

ABSTRACT

   The A356 alloy matrix composite,reinforced with SiC partiles was prepared using semi-solid stiring method. The effect of SiC particles content (3-12%) and size (35-120μm) on microstructure and properties of composite is studied. It shows that the composite with 12% SiC and the particle size 35μm has best properties.

1.Đặt vấn đề

   Sự phát triển mạnh mẽ của công nghiệp đòi hỏi phải phát triển những vật liệu mới có tính năng tổng hợp cao. Vật liệu compozit là vật liệu kết hợp từ hai hay nhiều vật liệu có bản chất và tính chất khác nhau, không hoà tan vào nhau, được phân cách bằng ranh giới rõ rệt. Vật liệu compozit nền kim loại nổi lên như như vật liệu kết cấu có tiềm năng lớn, có tính chất tổng hợp cao với các ứng dụng cho các chi tiết cần có độ bền riêng, mô đun đàn hồi riêng cao, chống mài mòn tốt, hệ số giãn nở nhiệt thấp, làm việc được ở nhiệt độ cao, đặc biệt trong lĩnh vực hàng không vũ trụ. ở Việt Nam, đã có một số công bố về compozit nền hợp kim nhôm cốt hạt SiC, song còn thiếu nghiên cứu các tính chất của chúng. Bài báo này giới thiệu kết quả nghiên cứu thăm dò công nghệ chế tạo compozit.

2. Thực nghiệm

2.1. Chế tạo compozit

   Vật liệu nền là hợp kim silumin mác A356 chứa (6,5-7,5)%Si; (0,2-0,4)%Mg. Vật liệu cốt là SiC với lượng dùng 3, 6 và 12%; kích thước hạt 35, 75 và 130 μm. Hợp kim A356 được nấu trong lò điện trở Nabertherm, có bộ đặt và điều khiển nhiệt độ chính xác, vận hành đơn giản, thuận tiện. Dung tích nấu: 4kg/ mẻ ở nhiệt độ 780°C. Hợp kim sau đó được được đưa sang lò điện trở thứ hai, dung tích 2 kg để khử khí; làm nguội tới (585-590) °C, giữ nhiệt và khuấy bán lỏng bằng cánh khuấy 3 hoặc 6 cánh với tốc độ (780-950) vòng/phút, trong (10- 15) phút, tuỳ theo lượng SiC đưa vào. Trong quá trình khấy bán lỏng, hợp kim được che phủ bằng khí Ar phun từ một ống dẫn vào.

   Compozit sau khuấy bán lỏng được xử lý nhiệt và rót vào khuôn kim loại có kích thước (22 x 200) mm, đã được bổ ngót tốt.

2.2. Phương pháp nghiên cứu

   Lượng SiC được cân trên cân điện có độ chính xác cao và tính phần trăm theo trọng lượng hợp kim A356 được nấu và được kí hiệu là m(%). Kích thước hạt SiC được xác định qua kích thước mắt sàng khi rây và được kí hiệu là l(μm).

   Đã dùng tỷ lệ m/l để phân biệt các mẫu thí nghiệm khác nhau.

   Các mẫu compozit nền hợp kim, cốt hạt SiC được mài và chụp ảnh trên kính hiển vi quang học AXIOVERT 100A. Độ cứng của mẫu được xác định bằng phương pháp Brinen; giới hạn bền kéo và môđun đàn hồi được xác định trên máy thử vạn năng ZDM5-91. Hệ số giãn nở nhiệt trong khoảng nhiệt độ (28-350) °C được xác định nhờ thiết bị ULBRICH; độ mài mòn được đo nhờ thiết bị TRIBOtester theo tiêu chuẩn ISO 7148 và ASTN G99-95a tại phòng thí nghiệm Công nghệ Vật liệu kim loại, Trường Đại học Bách Khoa HN.

Hình 1, 2

Hình 1 và 2

12

Công nghệ thấm nitơ cho khuôn mới và khuôn đùn ép nhôm hình đã qua sử dụng

Bài báo này đề cập kết quả nghiên cứu sự thay đổi tổ chức tính chất khi thấm lại nitơ khuôn đã qua sử dụng nhiều lần. Xác định công nghệ thấm nitơ hợp lý, thời điểm cần thấm lại, số lần thấm lại tối đa,… để tuổi thọ làm việc của khuôn tốt nhất.

Nitriding for new and used extrusion dies

Lê Thị Chiều, Nguyễn Văn Tư
ĐHBK Hà Nội
Nguyễn Anh Sơn

Tóm tắt

   Để tăng thời gian phục vụ, sau một thời gian vận hành, khuôn thường được thấm lại nitơ. Bài báo này đề cập kết quả nghiên cứu sự thay đổi tổ chức tính chất khi thấm lại nitơ khuôn đã qua sử dụng nhiều lần. Xác định công nghệ thấm nitơ hợp lý, thời điểm cần thấm lại, số lần thấm lại tối đa,… để tuổi thọ làm việc của khuôn tốt nhất.

Abstract

   To improve performance of extrusion die, after number of exploitation periods, the dies must be renitrided. This paper presents the change of micro structure and properties of die after a lot of nitriding. The problem is how many times can be applied renitriding for a die to prevent deterioration during service? This study is to try to find out solution of this problem

 1. Đặt vấn đề

   Khuôn đùn ép nhôm hình là chi tiết làm việc ở nhiệt độ khá cao (450-500°C), thời gian kéo dài, chịu tải trọng lớn, thay đổi và chịu mài mòn. Thép làm khuôn đùn ép SKD61 (theo tiêu chuẩn JIS G4404 (1983)-Nhật bản có thành phần: (0,32÷0,42)%C; (0,8÷1,2)%Si; ≥0,5%Mn; (4,5÷5,5)%Cr, (1÷1,5)%Mo; (0,8÷1,2)%V) là loại thép hợp kim có hàm lượng cacbon trung bình. Sau khi nhiệt luyện hoá tốt thép sẽ có độ dai cao, chịu lực tốt kể cả va đập nhưng chịu mài mòn không cao. Để cải thiện khả năng chịu mài mòn nhất là ở nhiệt độ cao người ta thường phải tiến hành thấm nitơ. Theo [1] thấm nitơ không những làm tăng độ cứng và tính chịu mài mòn bề mặt mà còn nâng cao tính cứng nóng và bù lại lượng kim loại mất đi do mài mòn. Khuôn làm việc tốt nhất khi lõi có độ cứng (48÷53) HRC, bề mặt (62÷65) HRC.

2. Thực nghiệm

   Các mẫu mới và mẫu cắt ra từ khuôn hỏng do nhà máy nhôm thuộc Công ty Cơ khí Đông Anh cung cấp theo hợp đồng nghiên cứu. Độ cứng tế vi và phân tích tổ chức thực hiện trên máy DURAMIN và kính hiển vi quang học AXIOVERT100 trên kính hiển vi điện tử quét.

   Thấm nitơ quy mô thí nghiệm thực hiện trong lò thấm ở trường ĐHBK Hà Nội, quy mô công nghiệp tại Công ty Cơ khí Đông Anh. Chất thấm nitơ là NH3 do Công ty đạm Hà Bắc chế tạo. Mẫu thấm được đánh bóng và tẩy sạch trong cùng một điều kiện.

3. Kết quả và thảo luận

3.1. Công nghệ thấm nitơ cho khuôn mới

   Đã tiến hành nhiều mẻ thấm ở các nhiệt độ và thời gian thấm khác nhau, đồng thời thay đổi lưu lượng khí thấm, môi trường thấm để có tỷ lệ phân huỷ NH3 khác nhau. Để tránh bị ôxy hoá, chi tiết thấm được đưa vào lò ở nhiệt độ dưới 350°C. Chất chi tiết vào lò nguội thì tốt nhưng chu kỳ sản xuất kéo dài và không tận dụng được nhiệt khi thấm nhiều mẻ liên tiếp. Sau khi đóng chặt nắp lò, sục NH3 vào lò để đuổi hết không khí ra ngoài. Nâng dần nhiệt độ lò lên nhiệt độ thấm và đưa NH3 để bảo vệ (lưu lượng NH3 bảo vệ cho 1 m3 dung tích lò khoảng 20÷30 dm3/m3.phút).

   Hai dạng công nghệ tốt nhất được xem xét trình bày trên hình 1 và 2.

   Chế độ thấm nitơ 1 cấp (hình 1)

Hình 1. Sơ đồ công nghệ thấm nitơ 1 cấp

Hình 1. Sơ đồ công nghệ thấm nitơ 1 cấp

   Công nghệ thấm một cấp là: nhiệt độ thấm 530°C, thời gian 7 giờ, độ phân huỷ NH3: (55÷60)% (Độ phân huỷ được đo qua hệ thống đặt ngoài lò, đo bằng tỷ số thể tích của NH3 tan trong nước, H2 và N2 là các sản phẩm phân huỷ của nó). Sau khi đủ thời gian thấm làm nguội đến (200÷250)°C giữ ở đó 2 giờ, đuổi hết khí ra, mở lò đưa chi tiết ra nguội ngoài không khí. Nếu làm nguội chậm cùng lò thì không cần giữ ở (200÷250)°C. Giữ nhiệt ở (200÷250)°C có tác dụng tạo nhiều mầm nitơrit phân tán do đó hạn chế các hạt nitơrit thô to.

Hình 2. Sơ đồ công nghệ thấm nitơ 2 cấp

Hình 2. Sơ đồ công nghệ thấm nitơ 2 cấp

   Chế độ thấm 2 cấp được sơ đồ hoá trên hình 2 bao gồm: nhiệt độ 530°C, thời gian 7 giờ. Nửa chu kỳ đầu: độ phân huỷ NH3: (50-55)%; nửa chu kỳ sau: độ phân huỷ (70-75)%. Sự phân bố độ cứng trên bề mặt và theo chiều sâu lớp thấm nêu trong bảng 1.

Bảng 1. Sự phân bố độ cứng trên bề mặt và theo chiều

Bảng 1. Sự phân bố độ cứng trên bề mặt  và theo chiều

   Nhận thấy độ cứng bề mặt khá đều, độ cứng giảm dần từ ngoài vào trong, lõi đạt yêu cầu cho khuôn làm việc lâu dài, chiều dày lớp thấm hợp lý. Tổ chức lớp thấm xem trên hình 3.